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ABSTRACT 

 
In magnetic resonance imaging (MRI), there are three bands of images (“MRI triplet”) available, which are T1-, T2- and 
PD-weighted images. The three images of a MRI triplet provide complementary structure information and therefore it is 
useful for diagnosis and subsequent analysis to combine three-band images into one. We propose an advanced discrete 
wavelet transform (aDWT) for three-band MRI image fusion and the aDWT algorithm is further optimized utilizing two 
quantitative fusion metrics – the image quality index (IQI) and ratio spatial frequency error (rSFe). In the aDWT 
method, principle component analysis (PCA) and morphological processing are incorporated into a regular DWT fusion 
algorithm. Furthermore, the aDWT has two adjustable parameters – the level of DWT decomposition (Ld) and the length 
of the selected wavelet (Lw) that determinately affect the fusion result. The fused image quality can be quantitatively 
measured with the established metrics – IQI and rSFe. Varying the control parameters (Ld and Lw), an iterative fusion 
procedure can be implemented and running until an optimized fusion is achieved. We fused and analyzed several MRI 
triplets from the Visible Human Project® female dataset. From the quantitative and qualitative evaluations of fused 
images, we found that (1) the aDWTi-IQI algorithm produces a smoothed image whereas the aDWTi-rSFe algorithm 
yields a sharpened image, (2) fused image “T1+T2” is the most informative one in comparison with other two-in-one 
fusions (PD+T1 and PD+T2), (3) for three-in-one fusions, no significant difference is observed among the three fusions 
of  (PD+T1)+T2, (PD+T2)+T1 and (T1+T2)+PD, thus the order of fusion does not play an important role. The fused 
images can significantly benefit medical diagnosis and also the further image processing such as multi-modality image 
fusion (with CT images), visualization (colorization), segmentation, classification and computer-aided diagnosis (CAD). 
 
Keywords: Magnetic Resonance Imaging, Image fusion, Iterative fusion, Discrete wavelet transform (DWT), Fusion 
evaluation, Image quality index, Spatial frequency. 

 
1. INTRODUCTION 

 
Image fusion combines multiple-source imagery by using advanced image processing techniques. Specifically, it 
integrates disparate or complementary images in order to enhance the information apparent in the respective source 
images, as well as to increase the reliability of interpretation. This leads to more accurate image1 and increased 
confidence (thus reduced ambiguity), and improved classification.2-4 This paper focuses on the “pixel-level” fusion 
process, where a composite image has to be built of two or more input images. A general framework of image fusion can 
be found elsewhere.5 In image fusion, some general requirements,6 for instance, pattern conservation and distortion 
minimization, need to be followed. To measure the image quality, the quantitative evaluation of fused imagery has to be 
considered such that an objective comparison of the performance of different fusion algorithms can be carried out. In 
addition, a quantitative measurement may potentially be used as a feedback to the fusion algorithm to further improve 
the fused image quality. 

Through the wide applications of image fusion in medical imaging, remote sensing, nighttime operations and multi-
spectral imaging, many fusion algorithms have been developed. Two common fusion methods are the discrete wavelet 
transform (DWT)6-10 and various pyramids (such as Laplacian, contrast, gradient and morphological pyramids).11-21 As 
with any pyramid method, the wavelet-based fusion method is also a multi-scale analysis method. The studies22-24 
showed that the DWT method has more complete theoretical support as well as further development potentials. For 
example, Ref. [22] showed that an advanced DWT (aDWT) fusion algorithm is superior to any pyramid-based method, 
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and Refs. [23-34] presented an iterative aDWT (aDWTi) algorithm optimized by a given fusion metric. This paper will 
discuss the iterative aDWT method and its applications to MRI image fusion.  

Magnetic resonance imaging (MRI) can create internal images of the soft tissues of the body using combinations of radio 
waves and magnetic fields. Three bands of MRI images (referred as a “MRI triplet”) are available in MRI imaging, i.e., 
T1-, T2- and PD-weighted images, where T1 (spin lattice relaxation) and T2 (spin spin relaxation) are the time constants 
corresponding to the imaging tissues, PD (proton density) reflects the number of hydrogen atoms in the imaging region. 
The three images of a MRI triplet provide complementary structure information and therefore it is useful for diagnosis 
and subsequent analysis to combine (i.e., fuse) three weighted images into one.  Aguilar25-26 et. al. proposed to fuse and 
then colorize medical images with a neural network-based fusion architecture. Hereby we aim at how to optimize then 
improve the fused image quality under the wavelet-based fusion framework. Specifically, to improve the fused image 
quality in MRI image fusion, we propose to use the iterative aDWT algorithms that are optimized utilizing two fusion 
metrics – the image quality index (IQI)23 and ratio spatial frequency error (rSFe).24 The spatial frequency (SF) and 
entropy are also used to measure the image quality.  

The subsequent sections of this paper are organized as follows. First, the image fusion metrics and methods are fully 
described. Then the experimental results and discussions are presented. Lastly conclusions are drawn based on the 
experimental analyses. 
 

2. IMAGE FUSION METRICS AND METHODS 
 
There are four image quality metrics and two wavelet-based fusion algorithms that are used in our MRI image fusion. 
We first discuss the fusion metrics and then introduce the DWT fusion methods. 
 
2.1 Image quality metrics 
As mentioned in the introduction, the general requirements of an image fusion process are that it should preserve all 
useful pattern information from the source images and meanwhile it should not introduce artifacts that could interfere 
with subsequent analyses.27 However, it is nearly impossible to combine images without introducing some form of 
distortion. In this subsection we discuss quantitative (i.e., objective) measures (non-requisite for ground truths) that 
could be carried out automatically by computers. 
 
2.1.1 Entropy 
Entropy is given by the following equation 
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where p(l) is the probability of gray level l, and the dynamic range of the analyzed image is [0, L-1] (typically L = 256). 
 
2.1.2 Image quality index 
The image quality index was recently introduced by Wang and Bovik.28 Given two sequences x = (x1, …, xn) and y = (y1, 
…, yn), let x denote the mean of x, and xσ and xyσ denote the variance of x and covariance of x and y, respectively. The 
global quality index of two vectors is defined as 
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Note that the first component in Eq. (3) is the correlation coefficient between x and y. This value is a measure for the 
similarity of the vectors x and y, and takes values between 0 and 1 (considering the image quality evaluation where the 
values xi, yi are positive grayscale values). The second component in Eq. (3) corresponds to the luminance distortion 
which has a dynamic range of [0, 1]. The third factor in Eq. (3) measures the contrast distortion and its range is also [0, 
1]. In summary, Q0 ∈  [0, 1], and the maximum value Q0 = 1 is achieved when x and y are identical. 
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Piella and Heijmans29 introduced a weighting procedure into Q0 calculation. The weight should reflect the local 
relevance of an input image that may depend on its local variance, contrast, sharpness, or entropy. Given the local 
salience (e.g., local variance) of two input images A and B, we compute a local weight λ indicating the relative 
importance of image A compared to image B: the larger λ, the more weight is given to image A. A typical choice for λ is  

λ = S(IA) / [S(IA) + S(IB)],        (4) 
where S(IA) and S(IB) denote the salience of input image A and B, respectively. Then, the weighted image quality index 
(IQI) can be defined as 

Qw = λQ0(IA, IF) + (1−λ) Q0(IB, IF).      (5) 

Since image signals are generally non-stationary, it is more appropriate to measure the weighted image quality index Qw 
over local regions (e.g., by partitioning the entire image into a set of ‘blocks’) and then combine these local results into a 
single measure as the global measure of the entire image. Piella also suggested using local variance as the salience of an 
image, i.e., S(IA) = Aσ . In fact, the IQI metric measures the similarity between the fused image (IF) and both of the input 
images (IA and IB) by assuming that an ideally fused image should resemble both original input images. For example, in 
our experiments, dividing each image (IA, IB or IF) into a certain number of blocks by designating the block size of 16×16 
pixels, compute each Q0 on each small bock (window), then sum all Q0’s up through all blocks and finally take the 
average. 
 
2.1.3 Spatial frequency 
The metric “spatial frequency” (SF)30-31 is used to measure the overall activity level of an image, which is defined as 
follows.  

22 )()( CFRFSF += ,       (6) 
where RF and CF are row frequency and column frequency respectively. 
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Notice that the term of “spatial frequency” that is computed in spatial domain as defined in Eqs. (6-7), does not 
correspond with Fourier transform where the spatial frequency is measured in frequency domain with the unit of “cycles 
per degree” or “cycles per millimeter”. 
 
2.1.4 The ratio of SF error 
Similar to the definitions of RF and CF, spatial frequency along two diagonal directions, termed as main diagonal SF 
(MDF) and secondary diagonal SF (SDF), can be defined as below, 
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where 21=dw  is a distance weight; similarly it can be considered that 1=dw  in Eqs. (7).  

Then the overall spatial frequency of an image becomes  
2222 )()()()( SDFMDFCFRFSF +++= ,    (9) 

which is a combination of four directional SFs.  

With Eq. (9) we can calculate the SFs of input images (SFA and SFB) and the SF of the fused image (SFF). Now we 
determine how to calculate a reference SF (SFR) with which the SFF can be compared. The four differences (inside 
square brackets) defined in Eqs. (7-8) are actually the four first-order gradients along four directions at that pixel, 
denoted as Grad(I(i,j)). The four reference gradients can be obtained by taking the maximum of absolute gradient values 
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between input image A and B along four directions: 
GradD(IR(i,j)) = max{abs[GradD(IA(i,j))], abs[GradD(IB(i,j))]},        

for each of four directions, i.e., D = {H, V, MD, SD},            (10) 
where ‘D’ denotes one of four directions (Horizontal, Vertical, Main Diagonal, and Secondary Diagonal). Substituting 
the differences (defined inside square brackets) in Eqs. (7-8) with GradD(IR(i,j)), four directional reference SFs (i.e., 
RFR, CFR, MDFR and SDFR) can be calculated. For example, the reference row frequency can be calculated as follows: 
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Similar to Eq. (9), the SFR can be computed by combining four directional reference SFs. Note that the notation of 
“GradH(IR(i,j))” is interpreted as “the horizontal reference gradient at point (i,j)”, and no reference image is needed to 
compute the SFR value.  

Finally, the ratio of SF error (rSFe) is defined as follows: 
rSFe = (SFF – SFR) / SFR.       (12) 

Obviously, an ideal fusion has rSFe = 0; that is, the smaller rSFe’s absolute value, the better the fused image. 
Furthermore, rSFe > 0 means that an over-fused image, with some distortion or noise introduced, has resulted; rSFe < 0 
denotes that an under-fused image, with some meaningful information lost, has been produced. 
 
2.2 Image fusion methods 
In this subsection, an advanced discrete wavelet transform (aDWT)22 method that incorporates principal component 
analysis (PCA) and morphological processing into a regular DWT fusion algorithm is first reviewed. Two iterative 
fusion algorithms are then briefly described which are optimized by two established metrics – IQI23 and rSFe,24 
respectively. 
  
2.2.1 The advanced DWT method 
The regular DWT method is a multi-scale analysis method. In a regular DWT fusion process, DWT coefficients from 
two input images’ are fused pixel-by-pixel by choosing the average of the approximation coefficients at the highest 
transform scale; and the larger absolute value of the detail coefficients at each transform scale. Then an inverse DWT is 
performed to obtain the fused image. At each DWT scale of a particular image, the DWT coefficients of a 2D image 
consist of four parts: approximation, horizontal detail, vertical detail and diagonal detail. In the advanced DWT (aDWT) 
method, we apply PCA to the two input images’ approximation coefficients at the highest transform scale, that is, we 
fuse them by using the principal eigenvector (corresponding to the larger eigenvalue) derived from the two ‘original’ 
images, as described in Eq. (13) below:  

)/()( 2121 aaCaCaC BAF +⋅+⋅= ,                                                (13) 
where CA and CB are approximation coefficients transformed from input images A and B. CF represents the fused 
coefficients; a1 and a2 are the elements of the principal eigenvector, which are computed by analyzing the ‘original’ 
input images (Note: not analyzing CA and CB because their sizes at the highest transform scale are too small to conduct 
an accurate result). Note that the denominator in Eq. (13) is used for normalization so that the fused image has the same 
energy distribution as the original input images.  

In combining the detail coefficients (the other three quarters of the coefficients) at each transform scale, the larger 
absolute values are selected, followed by a neighborhood (e.g., a 3×3 window) morphological processing, which serves 
to verify the selected pixels by using a “filling” and “cleaning” operation (i.e., the operation fills or removes isolated 
pixels locally). For example, in a 3×3 processing window (sliding pixel-by-pixel over the whole image), if the central 
coefficient was selected from Image A but all its 8-surrounding coefficients were selected from Image B, then after the 
‘filling’ process the central one would be replaced with the detail coefficient from Image B. Such an operation (similar 
to smoothing) can increase the consistency of coefficient selection thereby reducing the distortion in the fused image. 

 
2.2.2 The iterative aDWT optimized by the IQI  
The IQI value (discussed in Section 2.1.2) is calculated to measure the image quality fused by the aDWT, then it is fed 
back to the fusion algorithm in order to achieve a better fusion by adjusting parameters. Previous experiments22 have 
pointed to an important relationship between the fused image quality and the wavelet properties, that is, a higher level 
DWT decomposition  (with smaller image resolution at higher scale)  or  a lower order of  wavelets  (with shorter length) 
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usually resulted in a more sharpened fused image. This means that we can use the level of DWT decomposition (Notated 
as Ld) and the length of a wavelet (notated as Lw) as adjusted parameters of an iterative aDWT (aDWTi) algorithm. If 
measured with the IQI, its value usually tends to be large for a fused image with a larger Ld or a larger Lw. The 
combination of the aDWTi algorithm and the IQI metric derives a new algorithm, termed as “aDWTi-IQI”. With the 
definition of IQI, we know that it has an ideal value, 1, but it cannot give the error direction (i.e., positive or negative) 
because of 0 < IQI ≤ 1 (i.e., always IQI-1 < 0).  

Of course, a termination condition is needed in order to stop the fusion iteration. The fusion iteration stops when (1) the 
IQI value converges at its ideal value, i.e., the absolute value of (IQI-1) is smaller than a designated tolerance error; (2) 
there is no significant change of the IQI values between two adjacent iterations; (3) the IQI value is generally decreasing 
for subsequent iterations; (4) the parameters’ boundaries are reached. In implementing the iteration of a fusion 
procedure, appropriate boundaries of varying parameters should be designated based on the definition of parameters and 
the context. The details of implementation are depicted in Ref. [23]. 
 
2.2.3 The iterative aDWT optimized by the rSFe  
The similar fusion procedure as depicted in Section 2.2.2 is applicable here except for the optimization metric. Hereby 
we use the rSFe metric to direct the iterative fusion process that results in another algorithm, “aDWTi-rSFe”. Notice that 
the error of the rSFe value (subtracting the current rSFe value from the ideal value, 0) can indicate the error direction 
(positive or negative), which is useful to decide the parameters (Ld and Lw) adjustment (i.e., increment or decrement). For 
example, if the current rSFe(Ld, Lw) < 0, then increase Ld or decrease Lw for next aDWTi fusion process. One more 
termination condition is applicable to the aDWTi-rSFe algorithm, that is, stop the iteration when the rSFe value crosses 
over ‘zero’ (the ideal value). Taking the advantage of the sign of rSFe the iteration procedure can eventually be 
expedited. 
 

3. EXPERIMENTS AND DISCUSSIONS 
 
In our experiments, the MRI images were from the Visible Human Project® female dataset (Provided by the National 
Library of Medicine). The female dataset consists of axial MR images of the head and neck taken at 4 mm intervals and 
longitudinal (coronal) sections of the remainder of the body also at 4 mm intervals. The resolution of the MR images is 
256 pixels by 256 pixels. Each pixel has 12 bits of grey tone. We initially analyzed four axial head slices (MRI slice 
number 1104, 1124, 1134 1154; the first available MRI slice was numbered as 1014) and two coronal thorax slices (Slice 
# 4450, 4502). The quantitative evaluation values for MRI_1154 and MRI_4450 were shown in Table 10 and 11 but no 
images from these two slices were presented in this paper because of limited space.  
 
3.1 Experimental design 
Both iteration procedures of aDWTi-IQI and aDWTi-rSFe were implemented by separately varying two parameters, i.e., 
first changing Ld (because this parameter dominates the fused image quality) then changing Lw to optimize the respective 
metric. The convergence speed of the aDWTi-rSFe is faster than that of the aDWTi-IQI. The averaged numbers of 
iterations for two algorithms are 6 and 13, respectively. The optimized parameters (Ld, Lw) were given in Tables 2-11.  

Each MRI slice consists of three bands of images (i.e., a MRI triplet) that are PD-, T1- and T2-weighted images. We 
applied two algorithms, aDWTi-IQI and aDWTi-rSFe , to each MRI triplet. Combining any two of three image for each 
triplet resulted three versions of “two-in-one” (shorted as “2In1”) fusions that are PD+T1, PD+T2 and T1+T2. For a 
“three-in-one” (referred as “3In1”) fusion, it seems to be reasonable to fuse three weighted image in one fusion process. 
However, from the point of view of a realistic application, it is more feasible and practical to fuse two images per fusion 
process (referred as “two-per-fusion”). For example, after finishing the a MRI triplet fusion, later merging a CT image 
into the fused MRI image may be desired, then with the two-per-fusion strategy we just need to fuse the fused 3In1-MRI 

 Table 1: The SF and entropy values of three-band MRI images from six slices (refer to Figs. 1, 4, 7 and 10) 

MRI Slice # MRI_1104 MRI_1124 MRI_1134 MRI_4502 MRI_1154 MRI_4450 
Metric SF Entropy SF Entropy SF Entropy SF Entropy SF Entropy SF Entropy

PD 28.4835 5.7563 28.8492 5.7260 26.7923 5.6565 34.6461 7.1043 26.7980 5.6968 24.1026 6.7074
T1 27.1999 5.4611 27.6022 5.5154 30.1577 5.8635 36.7420 7.2133 26.4114 5.8740 29.4007 7.0510
T2 23.6816 5.5839 26.2818 5.7043 23.9474 5.4279 30.6362 6.8519 25.1200 5.7496 19.6315 6.1224
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Table 10: Quantitative evaluations of the fused images (MRI_1154 & 4450) using the aDWTi-IQI algorithm 

MRI_1154 MRI_4450 
Fusion\Metric 

(Ld,Lw) IQI rSFe SF Entropy (Ld,Lw) IQI rSFe SF Entropy 
PD+T1 (1, 5) 0.9392 -0.1664 27.1856 5.8104 (1, 4) 0.9464 -0.1013 28.3083 6.9059 
PD+T2 (2, 7) 0.9475 -0.0443 29.0463 5.8452 (1, 8) 0.9262 -0.0988 23.6172 6.5039 
T1+T2 (1, 2) 0.8724 -0.0828 30.2264 5.9976 (4, 4) 0.8649 -0.0124 31.8474 6.8831 

(PD+T1) +T2 (1, 8) 0.9236 -0.0741 29.8082 5.7863 (4, 4) 0.8850 -0.0172 30.2017 6.6948 
(PD+T2) +T1 (1, 3) 0.9131 -0.1825 28.2942 5.7088 (1, 9) 0.9166 -0.1134 28.5344 6.8506 
(T1+T2) +PD (1, 7) 0.9744 -0.0922 30.4792 5.7855 (1, 3) 0.9595 -0.0887 30.0748 6.8035 

 
Table 11: Quantitative evaluations of the fused images (MRI_1154 & 4450) using the aDWTi-rSFe algorithm 

MRI_1154 MRI_4450 
Fusion\Metric 

(Ld,Lw) IQI rSFe SF Entropy (Ld,Lw) IQI rSFe SF Entropy 
PD+T1 (6, 2) 0.9249 -0.0252 31.7917 5.7489 (6, 2) 0.9317 -0.0012 31.4634 7.0143 
PD+T2 (6, 2) 0.9363 -0.0063 30.2024 5.6166 (4, 2) 0.9175 -0.0106 25.9269 6.5316 
T1+T2 (4, 5) 0.8647 0.0384 34.2226 5.9894 (4, 2) 0.8577 -0.0050 32.0882 6.8875 

(PD+T1) +T2 (4, 3) 0.9086 -0.0040 35.2688 5.7346 (5, 3) 0.8855 -0.0156 32.8446 6.8318 
(PD+T2) +T1 (5, 2) 0.9023 -0.0268 34.442 5.6374 (6, 2) 0.8950 -0.0066 32.9066 6.9543 
(T1+T2) +PD (5, 2) 0.9495 -0.0165 36.0819 5.7502 (7, 3) 0.9499 -0.0123 32.8364 6.8660 

 
image and the CT image (unnecessary to restart fusing four images). By following the two-per-fusion strategy, there are 
also three versions of three-in-one fused images for each MRI triplet, which are (PD+T1)+T2, (PD+T2)+T1 and 
(T1+T2)+PD (where the parentheses stand for the fusion precedence). We will investigate whether any significant 
difference existed among the three versions of 3In1 fusions.  

With two fusion algorithms applied to a MRI triplet, a total of 12 fused images were yielded. The analyzed results of 
each triplet were exhibited with two tables and eleven images that were presented on one page (see Tab. 2-9 & Fig. 1-12 
on 4 pages following the ‘CONCLUSIONS’ section). Four quantitative metric values along with optimized parameters 
were shown in two tables (corresponding to two algorithms). For reference, the SF and entropy values of six original 
MRI triplets are listed in Table 1. The original three-band images, three versions of two-in-one fused images per 
algorithm, and one selected three-in-one fused image per algorithm are presented on the page. 
  
3.2 Result analyses and discussions 
There are four quantitative evaluations are shown in Tables 2-11 but we need to select one metric to measure the image 
quality across two different algorithms and a dozen of fused images in order to make fair comparisons. The IQI and rSFe 
were used as optimization metrics in two algorithms and thus they cannot be selected for comparison. The metric of 
Entropy is not applicable either because it cannot reflect the relationship between the fused image and the input images. 
For instance, we expect Entropy(PD+T1) ≥ Any{Entropy(PD), Entropy(T1)}. For most of fusion cases, their Entropy 
values do not obey this inequation  whereas their SF values do.  Although the SF metric itself cannot absolutely  measure  

 
 

Table 13: The main effects of ANOVA tests on the image 
quality measures with SF from SF_2In1 and SF_3In1 

Fusion Group Source df F Sig. 
Algorithm 1 4.313 0.046
Img4Fus 2 3.221 0.054SF_2In1 

df(Error)=30 
Algo * Img 2 0.181 0.835
Algorithm 1 10.308 0.003
Img4Fus 2 0.22 0.804SF_3In1 

df(Error)=30 
Algo * Img 2 0.112 0.895

Table 12: The descriptive statistics on the measurement of SF: 
The fused images were from two groups: SF_2In1 and SF_3In1 

Algorithm Img4Fus Mean (SF_2In1) Mean (SF_3In1) N
aDWTi-IQI Total 30.7021 32.2474 18
aDWTi-rSFe Total 33.5901 36.9068 18

1 32.3638 34.9485 12
2 29.8840 33.8971 12Total 
3 34.1905 34.8857 12
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the fused image quality because it cannot distinguish 
useful information from artifacts or noise, it is still 
suitable to compare fused images’ quality (i.e. as a 
relative measurement).  

In each table, one row of three fusions from each fusion 
group (2In1 or 3In1) was highlighted (corresponding to 
the largest SF value) according to the SF metric. One of 
three versions of three-in-one fused images per algorithm 
was selected to be presented if its SF value is the largest among three of them. From casual observations of illustrated 
images, the observed results seem to agree with the quantitatively evaluated results. Specifically, both quantitative (by 
SF) and qualitative (by observation) evaluations (for both algorithms) support that, among 2In1 fusions the fused image 
“T1+T2” contains the most structural information whereas among 3In1 fusions the fused image “(PD+T1)+T2” is the 
most informative one. By examining all fused images produced from two algorithms, we found that the fused images 
using aDWTi-IQI are smoothed but the fused images using aDWTi-rSFe are sharpened.  

In order to determine if the fusion results from the two algorithms and from the three versions of fusions (referred as 
“Image-for-Fusion” or ‘Img4Fus’) for each fusion group were significantly different, a 2×3 (i.e., algorithm by image-
for-fusion) two-way repeated measures Analysis of Variance (ANOVA) was carried out on the “SF values” of fused 
images for each fusion group (2In1 or 3In1, referred as “fusion-group”)  using SPSS (Version 14). The results of this 
analysis were shown in Tables 12-13. Table 12 explains that (1) Algorithm “aDWTi-rSFe” produces more informative 
images (with larger mean SF value) than Algorithm aDWTi-IQI, which comply with the conclusion of the aDWTi-rSFe 
yields sharpened fused images (refer to the top two rows of Table 12); (2) in the fusion group of ‘2In1’, the fused image 
“T1+T2” (labeled as ‘3’) has the largest mean SF (= 34.1905) whereas in fusion-group 3In1 the mean SF of 
“(PD+T1)+T2” (labeled as ‘1’) is the biggest (= 34.9485) (the bottom three rows of Table 12). From Table 13, we learn 
that for both 2In1 and 3In1 fusion groups, the main effect on factor “Algorithm” is significant (p = 0.046 and 0.003) but 
no significance is shown for factor “Img4Fus” (p = 0.054 and 0.804), and non-significant interaction is found between 
these two factors. Based on the statistical results (in Table 13), we can conclude that Algorithm aDWTi-rSFe is superior 
to aDWTi-IQI (in the sense of SF metric), non-significant difference among three versions of 3in1 fusions is found. 
However, for three versions of 2in1 fusions, we have p = 0.054 that means, strictly speaking, non-significant difference 
(maybe due to small samples), however, the differences are observable from both quantitative analyses (Table 12) and 
figure illustrations (Figs. 1-12).  

Another interesting question is what the optimization values for parameters (Ld, Lw) are. Although they rely on a 
particular image the frequency analysis (as shown in Table 14) can show some typical values. For example, to have an 
optimized fusion by running Algorithm aDWTi-rSFe, we may initially set (Ld, Lw) = (6, 3) that will speed up the 
convergence. 
 
3.3 Future work 
We planned to analyze a large sample of images such that more accurate statistical analyses will be conducted. We may 
apply the two iterative aDWTi algorithms to multimodality image fusion (e.g., with CT, PET) and further follow up the 
fusion benefits on segmentation and colorization.33 
 

4. CONCLUSIONS 
 
Two iterative fusion procedures (aDWTi-IQI and aDWTi-rSFe) are developed and successfully applied to three-band 
(PD, T1 and T2) MRI image fusion. The fused images were evaluated quantitatively and statistically (and with visual 
inspections, too). The informative fused images were recommended and two fusion procedures were compared on the 
basis of image quality evaluation. From the experimental results yielded by the aDWTi-IQI and aDWTi-rSFe, we found 
that that (1) the aDWTi-IQI algorithm produces a smoothed image whereas the aDWTi-rSFe algorithm yields a 
sharpened image, (2) fused image “T1+T2” is the most informative one in comparison with other two-in-one fusions 
(PD+T1 and PD+T2), (3) for three-in-one fusions, no significant difference is observed among the three fusions of 
(PD+T1)+T2, (PD+T2)+T1 and (T1+T2)+PD, thus the order of fusion does not play an important role. The fused images 
are greatly useful for diagnosis purpose and also significantly benefit the further image processing such as multi-
modality image fusion (with CT images), visualization (colorization), segmentation, classification and computer-aided 
diagnosis (CAD). 

Table 14: The frequency analysis of parameters (Ld, Lw). The 
“[,]” gives a range of parameter values and the percentage 
means the normalized frequency. 

aDWTi-IQI aDWTi-rSFe Statistics 
Ld Lw Ld Lw 

Mean 1.8 5.7 5.8 2.5 
Mode (Percent) 1 (80%) [3,9] (94%) [5,7] (89%) [2,3] (92%)
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Table 2: Quantitative evaluations of the fused images (with MRI_1104) using the aDWTi-IQI algorithm (Fig. 2) 

Fusion\Metric (Ld,Lw) IQI rSFe SF Entropy 
PD+T1 (1, 5) 0.9318 -0.1831 27.7975 5.5812 
PD+T2 (1, 5) 0.9307 -0.1041 28.2410 5.7780 
T1+T2 (5, 6) 0.8655 -0.0336 31.8010 5.6434 

(PD+T1) +T2 (5, 6) 0.9105 -0.0213 31.5688 5.4785 
(PD+T2) +T1 (1, 7) 0.9135 -0.1619 28.8772 5.4872 
(T1+T2) +PD (1, 3) 0.9526 -0.1214 31.5619 5.6508 

Table 3: Quantitative evaluations of the fused images (with MRI_1104) using the aDWTi-rSFe algorithm (Fig. 3) 

Fusion\Metric (Ld,Lw) IQI rSFe SF Entropy 
PD+T1 (6, 2) 0.9220 -0.0309 32.9776 5.6725 
PD+T2 (7, 2) 0.9226 -0.0090 31.2410 5.2386 
T1+T2 (7, 2) 0.8609 -0.0119 32.5138 5.3378 

(PD+T1) +T2 (7, 3) 0.9054 -0.0218 35.2481 5.4090 
(PD+T2) +T1 (7, 2) 0.9080 -0.0294 35.1693 5.3829 
(T1+T2) +PD (5, 3) 0.9435 -0.0329 35.3353 5.5739 

 

 
(a) PD       (b) T1                  (c) T2 
Figure 1: The MRI triplet of a head slice (from the Visible Human Project® female data): MRI_1104 

 
(a) PD+T1      (b) PD+T2          (c) T1+T2              (d) (PD+T1) +T2  
Figure 2: The fused images (with MRI_1104) using the aDWTi-IQI algorithm 

 
(a) PD+T1      (b) PD+T2          (c) T1+T2              (d) (T1+T2)+PD 
Figure 3: The fused images (with MRI_1104) using the aDWTi-rSFe algorithm
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Table 4: Quantitative evaluations of the fused images (with MRI_1124) using the aDWTi-IQI algorithm (Fig. 5) 
Fusion\Metric (Ld,Lw) IQI rSFe SF Entropy 

PD+T1 (1, 3) 0.9320 -0.1395 29.9470 5.6500 
PD+T2 (1, 8) 0.9413 -0.1018 29.1358 5.7777 
T1+T2 (1, 10) 0.8566 -0.1454 29.6918 5.7427 

(PD+T1) +T2 (1, 6) 0.9155 -0.0909 31.5028 5.6611 
(PD+T2) +T1 (1, 7) 0.9123 -0.1558 30.0149 5.5341 
(T1+T2) +PD (1, 7) 0.9733 -0.1023 30.6811 5.6437 

Table 5: Quantitative evaluations of the fused images (with MRI_1124) using the aDWTi-rSFe algorithm (Fig. 6) 

Fusion\Metric (Ld,Lw) IQI rSFe SF Entropy 
PD+T1 (5, 2) 0.9207 -0.0270 33.8631 5.6621 
PD+T2 (6, 2) 0.9311 -0.0136 31.9975 5.5164 
T1+T2 (7, 2) 0.8400 -0.0135 34.2741 5.5141 

(PD+T1) +T2 (7, 3) 0.9005 -0.0254 36.5365 5.4126 
(PD+T2) +T1 (6, 2) 0.8911 -0.0297 36.2728 5.4791 
(T1+T2) +PD (5, 3) 0.9439 -0.0280 36.8215 5.6574 

 

 
(a) PD       (b) T1                  (c) T2 
Figure 4: The MRI triplet of a head slice (from the Visible Human Project® female data): MRI_1124 

 
(a) PD+T1      (b) PD+T2          (c) T1+T2              (d) (PD+T1) +T2  
Figure 5: The fused images (with MRI_1124) using the aDWTi-IQI algorithm 

 
(a) PD+T1      (b) PD+T2          (c) T1+T2              (d) (T1+T2)+PD 
Figure 6: The fused images (with MRI_1124) using the aDWTi-rSFe algorithm
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Table 6: Quantitative evaluations of the fused images (with MRI_1134) using the aDWTi-IQI algorithm (Fig. 8) 
Fusion\Metric (Ld,Lw) IQI rSFe SF Entropy 

PD+T1 (1, 7) 0.9310 -0.1461 30.4919 5.8607 
PD+T2 (1, 3) 0.9371 -0.1128 26.1649 5.6048 
T1+T2 (1, 9) 0.8591 -0.0846 32.5301 5.9368 

(PD+T1) +T2 (1, 9) 0.9001 -0.0773 31.6277 5.6585 
(PD+T2) +T1 (1, 3) 0.9030 -0.1194 31.5931 5.7268 
(T1+T2) +PD (1, 7) 0.9649 -0.1051 31.9018 5.7173 

Table 7: Quantitative evaluations of the fused images (with MRI_1134) using the aDWTi-rSFe algorithm (Fig. 9) 

Fusion\Metric (Ld,Lw) IQI rSFe SF Entropy 
PD+T1 (5, 3) 0.9133 -0.0299 34.6410 5.7268 
PD+T2 (5, 3) 0.9283 -0.0117 29.1458 5.4762 
T1+T2 (7, 2) 0.8480 -0.0163 34.9580 5.3328 

(PD+T1) +T2 (7, 2) 0.8894 -0.0160 36.7621 5.0196 
(PD+T2) +T1 (5, 3) 0.8811 -0.0334 36.2251 5.5784 
(T1+T2) +PD (5, 3) 0.9374 -0.0301 36.6863 5.4615 

 

 
(a) PD       (b) T1                  (c) T2 
Figure 7: The MRI triplet of a head slice (from the Visible Human Project® female data): MRI_1134 

 
(a) PD+T1      (b) PD+T2          (c) T1+T2              (d) (T1+T2)+PD 
Figure 8: The fused images (with MRI_1134) using the aDWTi-IQI algorithm 

 
(a) PD+T1      (b) PD+T2          (c) T1+T2              (d) (PD+T1)+T2 
Figure 9: The fused images (with MRI_1134) using the aDWTi-rSFe algorithm 
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Table 8: Quantitative evaluations of the fused images (with MRI_4502) using the aDWTi-IQI algorithm (Fig. 11) 

Fusion\Metric (Ld,Lw) IQI rSFe SF Entropy 
PD+T1 (1, 7) 0.9476 -0.0743 38.4339 7.2207 
PD+T2 (1, 9) 0.9191 -0.0950 35.1055 7.0522 
T1+T2 (7, 4) 0.8404 -0.0072 43.0664 7.0923 

(PD+T1) +T2 (7, 4) 0.8795 -0.0058 43.1187 7.0421 
(PD+T2) +T1 (1, 4) 0.9105 -0.0925 39.3016 7.1604 
(T1+T2) +PD (1, 3) 0.9557 -0.0839 41.3109 7.1802 

Table 9: Quantitative evaluations of the fused images (with MRI_4502) using the aDWTi-rSFe algorithm (Fig. 12) 

Fusion\Metric (Ld,Lw) IQI rSFe SF Entropy 
PD+T1 (6, 2) 0.9286 -0.0013 41.4649 7.2219 
PD+T2 (6, 2) 0.9084 -0.0002 38.7840 6.9958 
T1+T2 (7, 4) 0.8404 -0.0072 43.0664 7.0923 

(PD+T1) +T2 (7, 3) 0.8781 -0.0124 44.8934 7.0974 
(PD+T2) +T1 (5, 4) 0.8911 -0.0049 45.1335 7.1698 
(T1+T2) +PD (6, 2) 0.9451 -0.0052 44.8578 7.3281 

 

 
(a) PD       (b) T1                  (c) T2 
Figure 10: The MRI triplet of a thorax coronal slice (from the Visible Human Project® female data): MRI_4502 

 
(a) PD+T1      (b) PD+T2          (c) T1+T2              (d) (PD+T1) +T2 
Figure 11: The fused images (with MRI_4502) using the aDWTi-IQI algorithm 

 
(a) PD+T1      (b) PD+T2          (c) T1+T2              (d) (PD+T2) +T1 
Figure 12: The fused images (with MRI_4502) using the aDWTi-rSFe algorithm 
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