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Abstract 

A novel wavelet-Fourier analysis (WFA) is presented to 
extract features from retinal nerve fiber layer (RNFL) 
data and classify eyes as “glaucomatous” or “healthy”.  
Thickness estimates from 143 eyes from 72 people had 
been obtained with a scanning laser polarimeter (GDx-
VCC). For each scan, a double-hump curve was defined 
by the RNFL thickness obtained within 64 radial 
sectors at a fixed distance from the optic disc. A 
discrete wavelet transform (DWT) was applied to these 
one-dimensional data, and then a Fourier transform 
(FFT) was applied to the DWT detail coefficients. The 
union of DWT approximation coefficients and FFT 
amplitudes was used to provide the final feature 
vectors. Principle component analysis (PCA) was 
employed for dimensionality reduction. Finally, 
Fisher’s linear discriminant function (LDF) was used as 
a classifier. Experimental results with 84 normal eyes 
and 59 glaucomatous eyes show that the WFA method 
has the best classification performance in terms of 
sensitivity/specificity and ROC area, which are 
0.775/0.965 and 0.941, compared to a FFT-based 
analysis (an earlier method developed in our lab, 
0.755/0.958 and 0.918) and the NFI (a standard metric 
provided by the manufacturer, 0.671/1.0 and 0.918). 
 
1. Introduction 
Glaucoma often leads to characteristic damage of 
retinal ganglion cells. Therefore, strategies for 
glaucoma detection focus on detecting the functional or 
structural changes associated with ganglion cell 
disruption.  The long processes of the ganglion cells are 
accessible by imaging through the eye’s pupil and 
several methods of assessing the anatomical integrity of 
ganglion cells have been developed based on measuring 
the thickness of the retinal nerve fiber layer (RNFL) of 
the eye at each of a large array of points across the back 
of the eye. These computer-assisted imaging 
technologies [1,2,9] offer promise for detecting and 
assessing glaucomatous disruption.  One such device, 
the scanning laser polarimeter (GDx-VCC, Laser 
Diagnostic Technologies, Inc., San Diego, CA) infers 
RNFL thickness based on a change in the polarization 
of light exiting the eye, with the amount of polarization 
retardation proportional to pointwise RNFL thickness.  
A new version of this device (GDx-VCC) measures and 

compensates for individual differences in an eye’s 
extraneous effects on polarization.  The goal of the 
present research is to examine data from this new 
device and to develop a method for classifying scans.  

Feature extraction is the first and most important 
step aside from classification itself in a classification 
task. Original measured signals or data are defined as 
attributes or patterns that are seldom directly used as 
features to feed to a classifier because of their large 
dimensionality, high correlations and poor 
performance. Feature extraction abstracts high level 
information about individual patterns to facilitate 
classification. In general, a good feature vector (a set of 
feature variants), converted from a pattern vector of 
attributes, contains all of the essential information of 
the pattern with a possible lower dimensionality. All 
features should be distinguishable, reliable, and 
independent [8]. Consequently, some transformation 
techniques are anticipated to maximize (or enlarge) the 
distance between classes and probably reduce 
dimensionality in the feature space. Two common 
transformations, fast Fourier transform (FFT) and 
discrete wavelet transform (DWT), are used most often 
[3]. For example, in [4] a DWT-based classification 
technique was employed to predict the breakage of 
small drill bits, and Fourier analysis was applied to 
glaucoma detection in [5]. As far as which transform is 
better for a particular problem, it depends on the 
characteristics of the transform and the classified 
signals. In fact, FFT is good for frequency analysis, but 
DWT is suitable in analyzing both frequency 
information and temporal (or spatial) information [6].  
Furthermore, DWT will reduce the dimensionality of 
the feature vector because of its multiresolution 
properties. 

Ideally, the set of features used in a classification 
decision should be statistically independent, in that 
none of the features can be determined by a function of 
other features in the set because of correlations [7]. 
Principle component analysis (PCA) is an effective 
way to eliminate a substantial amount of redundancy 
caused by such interdependencies, and to achieve 
dimensionality reduction. Furthermore, PCA is easy to 
implement and parameterize.  

Linear discriminant function (LDF) and artificial 
neural networks (ANN) approaches are most frequently 
employed for biomedical classification problems. Some 



reports showed ANN had a better classification 
performance (using cSLO data) than LDF did [2]. 
However, ANN requires a large sample size and a good 
training process. In contrast, the LDF is a linear 
combination of feature vectors such as Fisher’s LDF, 
which maximizes the ratio of its between-class variance 
and within-class variance. It is efficient to obtain a LDF 
based on a small sample size. In addition, the linear 
function given by linear discriminant analysis (LDA, 
the process of inferring the LDF) can be physically 
explained in feature space.  

Although still fairly new, many researchers are 
pursuing RNFL imaging for glaucoma detection. 
Recently, a Fourier analysis (FFTA) method was 
developed in [1,5], which resulted in a better 
classification performance than the The-Number (a 
standard metric developed by the manufacturer for 
classifying prior similar polarimetry data) in terms of 
sensitivity/specificity and ROC (receiver’s operating 
curve) area [1]. But some spatial information was lost 
during the Fourier analysis in frequency domain. 

To further improve the classification performance, a 
wavelet-Fourier analysis (WFA) method is proposed 
that is based on analyzing the characteristics of 
measured RNFL data and a DWT transformation.  
 

2. Discrete Wavelet Transform 
Wavelet-based analysis of signals is an interesting, and 
relatively recent, tool. Similar to Fourier series analysis, 
where sinusoids are chosen as the basis function, 
wavelet analysis is also based on a decomposition of a 
signal using an orthonormal (typically, although not 
necessarily) family of basis functions. Unlike a sine 
wave, a wavelet has its energy concentrated in time, or, 
as in the present application, space. Sinusoids are useful 
in analyzing periodic and time-invariant phenomena, 
while wavelets are well suited for the analysis of 
transient, time-varying signals. Furthermore, in spatial 
domain, DWT analysis also gives the best performance 
in detecting discontinuities or abrupt changes in signals. 

Suppose f(x) ∈ L2(R) (where R is the set of real 
numbers, L2(R) denotes the set of measurable, square-
integrable one-dimensional functions) relative to 
wavelet function � (x) and scaling function � (x). A 
wavelet series expansion is similar in form to the well-
known Fourier series expansion and maps a function of 
a continuous variable into a sequence of coefficients. If 
the function being expanded is a sequence of numbers, 
like samples of a continuous function f(x), the resulting 
coefficients are called the discrete wavelet transform 
(DWT) of f(x). The DWT transform pair is defined as  
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where f(x), )(,0
xkjϕ  and � j,k(x) are functions of the 

discrete variable x = 0, 1, 2, ..., M − 1. Normally, we let 
j0 = 0, and select M (the length of the discrete samples 
of f(x)) to be a power of 2 (i.e., M = 2J) so that the 
summations are performed over x = 0, 1, 2, ..., M − 1, j 
= 0, 1, 2, ..., J − 1, and k = 0, 1, 2, ..., 2j − 1. The 
transform itself is composed of M coefficients, the 
minimum scale is 0, and the maximum scale is J − 1. 
The coefficients defined in Eqs. (1) and (2) are usually 
called approximation and detail coefficients, 
respectively. The process of computing these 
coefficients is referred as DWT analysis. On the other 
hand, DWT synthesis (or inverse DWT) is defined by 
Eq. (3) to reconstruct f(x) with these coefficients. 
Finally, it should be remembered that Eqs. (1) through 
(3) are valid for orthonormal bases and tight frames 
alone [6]. 

In practice we select a wavelet from ready-made 
wavelets for a particular problem. Different wavelets 
� (x) have different effects, for instance, Harr wavelets 
are suitable for representing a piecewise signal, and 
Daubechies wavelets are better in compressing data. 
Here we chose a wavelet called “Symmlets”. 

 

3. Wavelet-Fourier Analysis 
The procedure classifies eyes as “normal” or 
“glaucomatous” based on RNFL thickness 
measurements which provided the mean thickness of 64 
sectors located on a ring with a diameter equivalent to 
1.75 disc diameters and centered on the optic disc. 
There are three major steps involved as follows.  
3.1 Feature extraction 

(A) Fourier analysis method: A Fourier analysis 
method [1,5] was recently developed in our lab that can 
be used for a glaucoma classification. Fourier analysis 
is a process that decomposes a signal into the 
summation of a series of sine and cosine waves with 
different amplitudes, frequencies and phases 
(harmonics). Each Fourier transform coefficient has a 
physical meaning that can be interpreted in frequency 
domain corresponding to the original signal in the 
spatial domain. With these FFT coefficients directly, or 
after some kind of process such as filtering, the spatial 
signal can be reconstructed with an inverse FFT. 
Therefore, FFT is a standard method in feature 
representation [3].  In consideration of the shape of our 
analyzing signal that possesses a “double-hump” 
pattern (Fig. 1 (a)), similar to a sine wave, (which may 
lead to a shorter FFT representation with fewer 



harmonics), it is reasonable to use the signal’s FFT 
coefficients as primary features.  

However, it is difficult to reflect abrupt changes, 
such as tend to occur in a GDx-VCC signal, using FFT 
coefficients in the frequency domain alone. In other 
words, some small changes of waveform structure may 
be lost in the primary feature representation with the 
FFTA method. Accordingly, a new method is desired 
that can consider this spatial information contained in 
GDx-VCC data with a combination of the FFTA. 

(B) Wavelet-Fourier analysis method: In our current 
research, a wavelet-Fourier analysis (WFA) method is 
proposed that was shown to improve the glaucoma 
classification performance significantly. Here we select 
DWT as our first-step transformation, which is also a 
common method used in feature extraction [3]. In 
Section 2, it was shown that DWT is highly suitable for 
analyzing discontinuities and abrupt changes contained 
in signals. These small changes are encoded into 
wavelet transformed coefficients: approximation 
coefficients, containing down-sampled spatial 
information; and detail coefficients, containing detailed 
difference information due to the approximation (Fig. 1 
(b)). In addition, DWT is a multiscale analysis method 
that means analysis can be based on various space and 
frequency resolution scales [6]. At each transformation 
scale, there is a different resolution ability (multi-
resolution) of space and frequency, corresponding to 
the approximation and detail coefficients respectively. 
A second scale (j=4) of DWT analysis was selected 
(according to the dimension of original signals and the 
experimental results) in order to preserve high enough 
spatial resolution ability. On the other hand, this results 
in a relatively low frequency resolution overall.  For 
this reason, a further step, drawing from our previous 
work, applies a Fourier transform to the DWT detail 
part, considered as the second-step transformation, and 
computes frequency amplitudes so as to achieve high 
frequency resolution. The final step is to normalize the 
DWT approximation coefficients and FFT amplitudes 
separately, and to join them together as the final feature 
vector.  

3.2 Feature optimization 
    Principal component analysis (PCA) is a 
mathematical procedure that transforms a number of 
possibly correlated variables into a smaller number of 
uncorrelated variables called principal components. The 
objective of PCA is to reduce the dimensionality of the 
dataset while retaining most of the original variability 
in the data. The first principal component accounts for 
as much of the variability in the data as possible, and 
each succeeding component accounts for as much of the 
remaining variability as possible.  
    A   transformation   matrix   A,   used   for   principal 
components  calculation,  can  be  computed  by solving 

the eigenvectors and eigenvalues of the covariance of 
feature vectors [6]. Then the k ( �  n, the dimension of a 
feature vector) eigenvectors corresponding to the k 
largest eigenvalues to form matrix Ak are chosen. Using 
the transformation matrix Ak, a compressed feature 
vector of dimension k can be derived though linear 
combinations of original ones (Fig. 1 (c)). The reduced 
dimensionality of the features can make the classifier 
more efficient and more stable.  
3.3 Classification 
    The main purpose of a linear discriminant analysis is 
to predict group membership based on a linear 
combination of a set of predictor variables (i.e. a 
feature vector). The procedure begins with a set of 
observations where both group membership and the 
values of the predictor variables are known. The end 
result of the procedure is a model (i.e. LDF) that allows 
prediction of group membership when only the 
predictor variables are known.  

We’ve chosen Fisher’s LDF as a classifier to 
improve the classification robustness [10]. We first 
randomly and uniformly separate the entire dataset into 
two subsets. Then one subset is used for training and 
for obtaining a LDF, and the other subset is used for 
testing to assess performance of the classification 
method. 
 

4. Experimental Results and Discussion 
Our present sample consists of scans of 59 
glaucomatous eyes and 84 normal eyes, obtained from 
30 glaucoma patients (there is an invalid scan of one 
eye) and 42 healthy people. In prior research [9], we 
documented a correlation of the pattern of RNFL 
thickness between fellow eyes.  With this in mind, we 
analyzed the results for data from just one eye (selected 
at random) as well as from the full two-eye data. To 
minimize the possibility of sampling bias, classification 
results from WFA and FFTA were obtained for 20 runs 

 
(a) Original signal       (b) Transformed & normalized 

 
(c) Dimension reduced  

Fig. 1: Feature extraction steps 
  (a)-(c) (a normal sample) 

Fig. 2: Classification performance  
  on the test set varying with the  
  feature number k 



and means reported (i.e. a random train- and test-set 
division, known as k-fold variation cross validation 
[11], performed 20 times). 

For the WFA, an 8th-order wavelet named 
“Symmlets” was chosen. Then we applied a two-scale 
DWT to the 64-region GDx-VCC thickness data (i.e. M 
= 64, J = 6 and j = 4, 5 in Eq. (2)) by using coefficients 
of j = 4 while discarding that of j = 5 (as they are 
similar to that of j=4, and would be removed by PCA 
because of their correlations even if they were included), 
and retained the approximation coefficients but applied 
an FFT to the DWT detail coefficients. The DWT 
coefficients and FFT coefficients were normalized to 
the range [0,1], and joined together as preliminary 
feature vectors (Fig. 1 (b)). It is difficult to decide how 
to specify the parameter k, (the reduced feature number) 
used in Ak. Hence, while varying k from 1 to 20 with a 
step increment 1, we observed the classification 
performance (averaged over 20 runs) on the test set as 
shown in Fig. 2. Clearly, the best value of k was 5 for 
performing the succeeding PCA. Finally we fed the 
optimized feature vectors (5 elements in each vector) by 
PCA to the Fisher’s LDF for training and testing. 

For the FFTA classification, the amplitudes of the 
FFT transform of GDx-VCC data were computed and 
treated as features. The manufacturer’s suggested 
discrimination metric presently is the Nerve Fiber 
Indicator (NFI, a normalized score yielded by a trained 
support vector classifier) when an image was acquired. 
The NFI ranges from 0 to 100: a small number suggests 
normal; and a large number tends to be glaucomatous. 
To make a judgment, a threshold of 30 was suggested 
by the company.  

Performance of the three methods for discriminating 
normal from glaucoma cases is shown in Table 1.  On 
the most comprehensive measure, area under the ROC 
curve, the WFA performance was best (0.941) 
compared to 0.918 for both NFI and FFTA methods for 
the two-eye data. Similarly, performance was best for 
the WFA method (0.927) for the one-eye data.  
Performance was also better for this method in terms of 
sensitivity. A second point is that the better 
performance with the two-eye data set is consistent with 
the suggestion that there is a relevant relationship 
between the two eyes’ data [9]. In contrast, the results 
obtained by using only the DWT coefficients (j=4) as 
features are Sens./Spec./ROC area = 0.771/0.957/0.925 
(averaged over 20 runs on the 2-eye data). 
 

5. Conclusion 
A new feature extraction method, wavelet-Fourier 
analysis (WFA), was presented and applied to a 
glaucoma detection problem. Both DWT and FFT were 
employed to present the spatial and frequency 
information contained in the source GDx-VCC data 
jointly. This is followed by dimension reduction by the 

PCA technique and use of Fisher’s LDF as a classifier. 
The k-fold variation was used for cross validation 
ensuring reliable results. We conclude that the WFA 
method offers an improvement over the prior FFT-
based method of classifying glaucomatous RNFL scans 
that is due to the present method’s incorporation of the 
benefits from DWT instead of relying only on FFT. The 
WFA method can also be applied to other signal 
analysis and classification problems in addition to 
GDx-VCC eye-scan data. 
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Table 1: Cross validation results averaging of 20 runs on test subset  
using GDx VCC data (N = normal, G = Glaucoma) 

Dataset Method Sensitivity Specificity ROC 
area 

WFA  0.783 0.962 0.927 

FFTA 0.767 0.938 0.901 
1-eye data 

(42N×30G) 
NFI 0.671 1.0 0.918 

WFA  0.775    0.965    0.941 

FFTA 0.755 0.958 0.918 
2-eye data  

(84N×59G) 
NFI 0.671 1.0 0.918 

 


